Кто такие тест-дизайнеры и зачем они нужны |
07.04.2017 08:21 |
Автор: Антон Алексеев Человек всегда старается окружить себя качественными вещами. Одеваться в красивую и практичную одежду, питаться натуральными продуктами, водить надежную машину – это ли не естественное стремление каждого? В данный список мы можем смело включить и отлаженное программное обеспечение. Что такое «качественный программный продукт»? Это продукт, который выполняет поставленные перед ним задачи и удовлетворяет ожидания пользователей. Для достижения этого результата любая программа сначала проходит тестирование и только потом попадает в руки конечного потребителя. Так как сроки тестирования (как и любого процесса) имеют тенденцию стремиться к бесконечности, нам необходимо грамотное выстраивание процесса. И тут уже никак не обойтись без тест-дизайна.
Тест-дизайнер — что это за зверь и с чем его едят? Тест-дизайн – это этап процесса тестирования ПО, на котором проектируются и создаются тестовые случаи (тест-кейсы) в соответствии с определёнными ранее критериями качества и целями тестирования. Соответственно, тест-дизайнер – это сотрудник, в чьи обязанности входит создание набора тестовых случаев, обеспечивающих оптимальное тестовое покрытие приложения. Тест-дизайнер должен выстроить процесс тестирования всех важнейших частей программного продукта, используя минимально возможное количество проверок. В небольших командах работа тест-дизайнера зачастую ложится на плечи рядового тестировщика, в крупных же компаниях функции тестирования и тест-дизайна, как правило, четко разделены между специалистами. В итоге цепочка тестирования выглядит так:
Техники тест-дизайна Ли Копланд (Lee Copeland) выделяет следующие техники, используемые в тест-дизайне: 1. Тестирование Классами Эквивалентности (Equivalence Class Testing). Продемонстрируем это на конкретном примере. Представим, что мы тестируем модуль для HR, который определяет возможность принятия на работу кандидата в зависимости от его возраста. Установлены следующие условия отбора:
Стоит ли проверять каждое значение? Более разумным видится тестирование диапазона каждого условия. Собственно, это и есть наши классы эквивалентности:
Как уже было указано, после определения классов эквивалентности мы должны выполнить тест с любым значением из диапазона класса. Таким образом, у нас остается только 4 позитивных тест-кейса вместо первоначальных 100 (0-99), например:
2. Тестирование Граничных Значений (Boundary Value Testing). Нужно помнить, что «выше» и «ниже» – понятия относительные. Например, если мы говорим о границе 6$, то значение «ниже» будет 5$, а значение «выше» – 7$. Если речь идет о границе 6.00$, то значение «ниже» будет 5.99$, а значение «выше» – 6.01$. Не исключено, что значение «ниже» или «выше» границы может быть другим классом эквивалентности, уже охваченным нами. В этом случае нет смысла создавать дубликаты тест-кейсов. Вернемся к примеру, рассмотренному нами в технике классов эквивалентности:
Представим, что соответствующий код выглядит так: If (applicantAge >= 0 && applicantAge <=15) hireStatus="NO"; При предварительной оценке границ диапазонов требований сразу видна ошибка – диапазоны пересекаются, накладываются. По сути, условие должно быть записано по-другому:
В итоге корректный код должен выглядеть следующим образом: If (applicantAge >= 0 && applicantAge <=15) Таким образом, набор значений, для которых будут составлены тесты, будет выглядеть так: {-1, 0, 1}, {15, 16, 17}, {17, 18, 19}, {54, 55, 56}, {98, 99, 100}. 3. Таблица Принятия Решений (Decision Table Testing). Таблицы решений описывают логику приложения, основываясь на условиях системы, характеризующих ее состояния. Каждая таблица должна описывать одно состояние системы. Шаблон таблицы решений следующий: Нажмите на картинку, чтобы увеличить изображение Для наглядности обратимся к примерам. Допустим, нам необходимо протестировать приложение, которое вычисляет скидку на страхование автомобилей в зависимости от того, был ли водитель хорошим студентом и состоит ли он в браке. Начнем с выявления условий: Нажмите на картинку, чтобы увеличить изображение Получаем:
Предоставление скидки в зависимости от комбинации условий и будет нашим действием в приложении. Сведем описанные условия в таблицу: Нажмите на картинку, чтобы увеличить изображение После этого нам следует составить хотя бы по одному тест-кейсу для каждого из предполагаемых тестов. 4. Тестирование Состояний и Переходов (State-Transition Testing). Система переходит в то или иное состояние в зависимости от того, какие операции над нею выполняются. Для наглядности возьмем классический пример покупки авиабилетов: Нажмите на картинку, чтобы увеличить изображение
Все начинается с точки входа. Мы (клиенты) предоставляем авиакомпании информацию для бронирования. Служащий авиакомпании является интерфейсом между нами и системой бронирования авиабилетов. Он использует предоставленную нами информацию для создания бронирования. После этого наше бронирование находится в состоянии «Создано». После создания бронирования система также запускает таймер. Если время таймера истекает, а забронированный билет еще не оплачен, то система автоматически снимает бронь. Каждое действие, выполненное над билетом, и соответствующее состояние (отмена бронирования пользователем, оплата билета, получение билета на руки, и т. д.) отображаются в блок-схеме. На основании полученной схемы составляется набор тестов, в котором хотя бы раз проверяются все переходы. Некоторым исследователям представляется более удобным свести весь процесс в таблицу состояний и переходов. Конечно, таблица не так наглядна, как схема, но зато она получается более полной и систематизированной, так как определяет все возможные State-Transition варианты, а не только валидные. 5. Метод Парного Тестирования (Pairwise testing). Допустим, что мы имеем систему, которая зависит от нескольких входных параметров. Да, мы можем проверить все возможные варианты сочетания этих параметров. Но даже для случая, когда каждый из 10 параметров имеет всего два значения (Вкл/Выкл), мы получаем 210 = 1024 комбинаций! Используя метод парного тестирования, мы не тестируем все возможные сочетания входных параметров, а составляем тестовые наборы так, чтобы каждое значение параметра хотя бы один раз сочеталось с каждым значением остальных тестируемых параметров. Таким образом, метод существенно сокращает количество тестов, а значит, и время тестирования. Но изюминка метода не в том, чтобы перебрать все возможные пары параметров, а в том, чтобы подобрать пары, обеспечивающие максимально эффективную проверку при минимальном количестве выполняемых тестов. С этой задачей помогают справиться математические методы, называемые ортогональными таблицами. Также существует ряд инструментов, которые помогают автоматизировать этот процесс (например, AllPairs). 6. Доменный анализ (Domain Analysis Testing). 7. Сценарий использования (Use Case Testing). Что тут думать, трясти надо! Как гласит известное определение, программирование – это размышление, а не печатание. Автор совершенно уверен, что то же самое можно сказать и о тестировании. Так для чего же нам необходимы тест-дизайнеры? Зачем тратить время на анализ и дизайн, если его можно использовать на выполнение массы дополнительных проверок? Из приведенных выше примеров видно, что применение дизайна позволяет значительно сократить количество тестов, а также сконцентрироваться на наиболее уязвимых и важных участках функционала. Не зря уже сейчас многие компании не только вводят отдельные должности «тест-дизайнера» или «тест-аналитика», но и обучают их на специальных тренингах. Действительно: какой смысл, допустим, от полного тестового покрытия формы авторизации, если при этом не будет корректно работать механизм оплаты за товар в интернет-магазине? Ведь за то время, пока тестировщик 100 тестами проверит 100 значений, тест-дизайнер придумает, как за 10 тестов проверить 1000 значений! Таким образом, усилия, затраченные на тест-дизайн, с лихвой окупятся качеством выполнения тестирования. |